How is MLOps Becoming a CPG Requisite?

What is MLOps? | NVIDIA Blog

 

Before singing praises on the wonders that MLOps can do, let me shine some lights on a few new learnings, thanks to the post-pandemic crisis, that the companies across the globe have learned, especially the CPG.

  • Digital channels, or at least, digitization is a requisite. It is like Yoda said – do or don’t, there is no try! CPG companies who have toiled for years to see their brand sprout across the market witnessed a sharp decline in sales in a matter of months! Logistics became a big problem, yes, but their poorly implemented strategies were the actual Gordon Knot.
  • Today, consumers have a plethora of options. CPG firms cannot rely on their standard go-to-market strategies. How to connect with end-consumers? Now, there is an addendum to the question – how to connect with end-consumers and win them?
  • Companies across the world, irrespective of the size and market presence, have started moving from offline to online, in one or another way – Who does not think and act ‘online’ is up for a loss.
  • Health and wellness have become essential factors for the customers.
  • Millennials shop online; nothing drives them more except the cost to value. They want convenience, a sense of belonging, and too at lower prices.

Well, these are just the picture’s skeleton, the actual painting factors in multiple new developments, such as:

  • The emergence of small and medium-sized companies, focusing on target customers.
  • Manufacturers and distributors share data to streamline the logistics.
  • A surge in the usage of automated systems.
  • Shift towards local consumption.
  • E-Logistics companies collaborating with the retail stores.

The list is long.

A quick glimpse of how a product reaches the end consumer.

The 6 Phases of a Product Life Cycle: Untapped Opportunities to Enhance Consumer Experience - Servify Blog

If you start eagle eyeing each step, you will find tremendous opportunities hidden in them.
Here are a few.

Opportunity 1 – Introduce a forecasting functionality based on new data.
Opportunity 2 – Bring in an integrated system that synchronizes the data across the process.
Opportunity 3 – Factor in self-learning feature that would comprise the market changes, customers’ buying behavior, etc.

You can cash on the above opportunities by implementing automation systems with various machine learning (ML) algorithms. You can introduce ML algorithms, such as:

  • Route optimization to make the best of the sales reps’ time.
  • Product optimization to solve the product mix problems.
  • NLP to analyze the consumers’ behavior.
  • Trade promotion optimization to plan and execute your trade spends.

Again, this list is endless.

So, you have the solution – build ML models and deploy them.
What are the critical roadblocks in adopting Machine Learning?

Problem 1 – Continuous delivery of value

How to secure your CI/CD pipeline

Your team who works on the use case and writes the ML codes do not deploy them. Or at least, they do not have expertise on the delivery. So, relying your success entirely on the data science team can frustrate them and derail your ML journey.

Problem 2 – Composite and complex ML builds

Machine learning for composite materials | MRS Communications | Cambridge Core

Unlike traditional development builds, ML models make predictions by (indirectly) capturing data patterns without following the explicit rules. The ML build runs a pipeline that extracts patterns from the data to create model artifacts, making it far too complex and experimental.

Problem 3 – Productionizing ML models

ML Models — Prototype to Production | by Shreya Ghelani | Towards Data Science

Gartner figures 80% of the data science projects fail or never make it to production. To run the project successfully in a real-time environment, you need to find the problem situation and solve the problem when it occurs. You need to continuously monitor the process to find the difference between correct and incorrect predictions (bias) and know in advance how your training data will represent real-time data.

Areas to Focus: Identify Where Things Might Go Wrong for You

Beyond ML deployment difficulties and risks in the CPG, there are several other key areas where things can go wrong, so instead:

  • Find out the exact use case; if you try solving the wrong problems, things will go wrong.
  • Do not build models that do not map well to your business processes.
  • Check if you have any flawed assumptions about the data.
  • Convert the results of your experimentation into a production-ready model.

There are opportunities, there are problems, and there are ML models. However, the only requirement that delays the models’ deployments or often triggers performance issues is simply the lack of means to deploy it successfully. Anteelo can reduce your effort in solving the ML deployment challenges through its state-of-the-art ML Works platform that provides you the means to run thousands of ML models at scale and at once.

Part 1 of the Machine Learning Operations (MLOP) series

MLOps: Machine Learning Engineering | Towards Data Science

Introduction to Machine Learning Operations

Machine learning – a tech buzz phrase that has been at the forefront of the tech industry for years. It is almost everywhere, from weather forecasts to the news feed on your social media platform of choice. It focuses on developing computer programs that can acquire data and “learn” by recognizing patterns and making decisions with them.

Although data scientists build these models to simplify and make business processes more efficient, their time is, unfortunately, split and rarely dedicated to modeling. In fact, on average, data scientists spend only 20% of their time on modeling; the other 80% is spent on the machine learning lifecycle.

Building

Why Prototype? | Starmark | Integrated Marketing Communications

This exciting step is unquestionably the highlight of the job for most data scientists. This is the step where they can stretch their creative muscles and design models that best suits the application’s needs. This is where Anteelo believes that data scientists ought to spend most of their time to maximize their value to the firm.

Data Preparation

Data preparation – is there a process to follow? - The Data Value Factory

Though information is easily accessible in this day and age, there is no universally accepted format. Data can come from various sources, from hospitals to IoT devices; to feed the data into models, sometimes, transformations are required. For example, machine learning algorithms generally need data to be numbers, so textual data may need to be adjusted. Statistical noise or errors in data may also need to be corrected.

Model Training

Machine Learning in production - A guide to model evaluation and retraining

Training a model means determining good values for all the weights and bias in a model. Essentially, the data scientists are trying to find an optimal model that can minimize loss – an indication of how badly the prediction is performed on a single example.

Parameter Selection

A guide to an efficient way to build neural network architectures- Part I: Hyper-parameter selection and tuning for Dense Networks using Hyperas on Fashion-MNIST | by Shashank Ramesh | Towards Data Science

During training, it is necessary to select some parameters that will impact the prediction of the model. Although most are selected automatically, some subsets cannot learn and require expert configuration. These are known as hyper parameters. Experts trying to configure hyper parameters have to implement various optimization strategies to tune the hyper parameters.

Transfer Learning

Introduction to Deep Learning : Transfer Learning in Deep Learning - YouTube

It is quite common to reuse machine learning models across various domains. Although models may not be directly transferrable, some can serve as excellent foundations or building blocks for developing other models.

Model Verification

At this stage, the trained model will be tested to see if the validated model can provide sufficient information to achieve its intended purpose. For example, when the trained model is presented with new data, can it still maintain its accuracy?

Deployment

8 Best Practices for Agile Software Deployment – Stackify

At this point, the model has been thoroughly trained & tested and has passed all requirements. The step aims to use this model for the firm and ensure that it can continue to perform with a live stream of data.

Monitoring

Automating Machine Learning Monitoring | RS Labs

Now that the model is deployed and live, many businesses generally consider the process to be final. Unfortunately, this is far from reality. Like any tool, the model will wear out after use. If not tested regularly, it will provide irrelevant information. To make matters worse, since most machine learning models work in a “black box,” they lack the clarity to explain the model’s predictions, making the predictions challenging to defend.

Without this entire process, models would never see the light of day. That said, the process often weighs heavily on data scientists, simply because many steps require direct actions on their end. Enter Machine Learning Operations (MLOps).

MLOps (Machine Learning Operations) is a set of practices, frameworks, and tools that combines Machine Learning, DevOps, and Data Engineering to deploy and maintain ML models in production reliably and efficiently. MLOps solutions provide Data engineers, scientists, and engineers with the necessary tools to make the entire process a breeze. Next time, find out how Anteelo Engineers have developed a tool that targets one of these steps to make the lives of data scientists’ easier.

Order Cancellation Prediction: How a Machine Learning Solution Saved Thousands of Driver Hours

Artificial Intelligence and Machine Learning Solution - YouTube

‘Efficiency’ roots from processes, solutions, and people. It is one of the main driving forces leading to significant changes in the way companies work in the first decade of the 21st century. The following decennary further accelerated this dynamic. Now, post-COVID, it is vital for us to become efficient, productive, and environmentally friendly.

One of our clients manufactures and sells precast concrete solutions that improve their customers’ building efficiency, reduce costs, increase productivity on construction sites, and reduce carbon footprints. They provide higher quality, consistency, and reliability while maintaining excellent mechanical properties to meet customers’ most stringent requirements. The customers rely on their quality service and punctual delivery to receive products. This is possible because their supply chain model is simple. They prepare the order by date, call the driver the day before, and load the concrete the next morning. The driver delivers the exact specific product to the specified address.

However, a large percentage of customers cancel orders. One of the main reasons for the cancellation is the weather.

The client turned to Anteelo to provide an analytical solution for flagging such orders so that their employees do not have to prepare for such deliveries.

I’ll abridge the journey so far that it led to the creation of a promising solution.

How it all started?

One of the business units of the client suffered huge operational losses due to the cancellation of orders. Although the causes were(are) beyond their control, they always had(have) to compensate truck driver and concrete workers. To improve the demand and supply planning process’s efficiency, they had to encounter order cancellation risks. Though they might have increased their resource capacity by adding more people or working in shifts, this option may not have paved well in the long run. Apart from this, the risks may not have mitigated as anticipated, which might have further reduced the RoI.

Although they put forward various innovative ideas, the results did not reflect the expectations, resulting in the loss of thousands of drivers’ hours. Before deciding to use an analytical solution, they discovered that their existing system has two main shortcomings.

  • Extensive reliance on conventional methods for dispatch
  • Absence of a data-driven approach

Thus, they wanted to leverage a powerful ML-enabled solution to empower ‘order dispatching’ to effectively get ahead of order cancellation and minimize high labor costs.

Roadmap that led to the solution’s development

POC vs Prototype vs MVP: Which Strategy to Prefer?

The analytics team from Anteelo pitched the idea of developing a pilot solution and executing it in the decided test market and then creating a full-blown working solution.

We used retrospective data in the sterile concept (the idea was to solve as many challenges as possible for POC (Proof of Concept)). Later, when the field team gave positive feedback, we planned to deploy a cloud-based working model with a real-time front-end. Next, measure its benefits in terms of hours saved in the next 12 to 24 months.

Proof of Concept (POC)

From idea to the Proof (of Concept) - Cybercom

To reap the maximum benefits and minimize risks on the analytical initiative, we opted to start with the proof of concept (POC) and execute a lightweight version of the ML tool. We developed a predictive model to flag orders at risk of cancellation and simulated operational savings based on the weather and previous years’ data. We found that:

  1. 50% of orders were canceled each year
  2. A staggering percentage of orders were canceled after a specific time the day before the scheduled delivery – ‘Last-minute cancellations.’
  3. Because of these last-minute cancellations, hundreds of thousands of driving hours were lost

Creating the Most Viable Product (MVP)

Minimum Viable Product "MVP": What is it and how does it help your strategy?

Before we could go any further or zero down to the solution deployment, we had to understand the cancellation’s levers. And once the POC was ready, we decided to evaluate the results based on the baselines and expectations and compare them with the original goals. Next, we decided to proceed with the pilot test and modify the solution based on its result. Therefore, we selected a location and deployed some field representatives to provide real-time feedback and relied on our research for this purpose. The results (savings potential) were as follows:

  1. Fewer large orders canceled
  2. More orders canceled on Monday
  3. When the temperature dropped to certain degrees, the number of cancellations increased
  4. More than half of the last-minute cancellations were from the same customers
  5. If a certain proportion of the orders were canceled at least one day in advance, the remaining orders were canceled at the last minute
  6. On days with rain, the number of cancellations increased

Overall, order quantity, project, and customer behavior were the essential variables.

The MVP stage provided a staggering number, representing the associated monetary loss (in millions) due to the last-minute cancellations. The reasons behind such a grim figure were the lack of a data-oriented approach and prioritization method.

The deployed MVP helped reduce the idle hours. It helped flag the cancellations that we usually would have missed with our heuristic model. It also provided the market-wise potential, which we ultimately decided to roll out.

Significant findings (and refinements) in the ML model based on pilot test

Labor planning is a holistic process

An effective labor plan must deliberate factors other than the quantity (orders), such as the distribution of orders throughout the day, the value of the relationship with customers, and so on.

Therefore, the model output was modified to predict the quantity based on the hourly forecast.

Order quantity may vary with resource plan

‘Order quantity’ shows a considerable variation between the forward order book and the tickets, making it impossible to use it as a predictor variable.

Resources are reasonably fixed during the day

This contradicts one of the POC’s assumptions that resources will be concentrated in the market on a given day. This has led to corresponding changes in forecast reports, accuracy calculations, etc.

Building and Deploying a Full-blown ML-model at Scale

How to Develop an End-to-End Machine Learning Project and Deploy it to Heroku with

At this stage, we had the cancelation metrics, levers that worked, and exact variables to use in the solution. Now, the team has enough data to build an end-to-end solution comprising intuitive UI screens & functions, automated data flows, and model runs. And finally, measure the impact in monetary equivalent.

Benefits’ (Impact) Measurement

To turn the wheel and get it on track, we have to extract the model’s maximum value and evaluate it over time. We decided on two evaluation time metrics for measuring the impact.

  1. Year-on-Year
  2. Month-on-Month

The following is a summary table of improvements to key operational KPIs. Based on TPD change, the estimated savings are calculated based on the annual business volume.

TPD Location-specific US
Metric value (YoY) 30% (up) >$350k >$3M
Metric value (MoM) 12% (up) >$150k >$3M

*data is speculative and based on the pilot run.

Predictive Model’s Key Features

  1. Visual Insights
  2. Weekly Model Refresh
  3. Modular Architecture for seamless maintenance

Results

  1. Reduced Deadheading
  2. Streamlined dispatch planning
  3. Higher Labor Utilization
  4. Greater Revenue Capture

Why should you consider Anteelo’s ML/AI solutions?

We have successfully tested the pilot solution, and the model has shown annual savings of more than $3 million. Now, we will build and deploy the full version of the model.

Anteelo is one of the top analytics and data engineering companies in the US and APAC regions. If you need to make multi-faceted changes in your business operations, let us understand your top-of-mind concerns and help you with our unique analytics services. Reach out to us at https://anteelo.com/contact/.

error: Content is protected !!